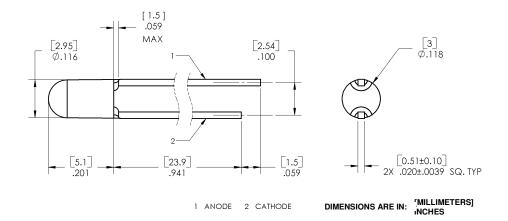

Round Through-Hole LED Lamp (3 mm)

OVLBx4C7 Series

- High brightness with well-defined spatial radiation patterns
- UV-resistant epoxy lens
- · Choice of blue, green, red or yellow
- No stand-offs



Each **OVLBx4C7** series device is a high-intensity LED mounted in a clear plastic T-1 package. The LED provides a well-defined and even emission pattern. Its UV-resistant epoxy lens makes this device an optimal solution for outdoor applications.

Applications

- Pedestrian signals
- · Signage and architectural lighting
- Backlighting
- Automotive
- Outdoor/indoor displays

Part Number	Material	Emitted Color	Intensity Typ. mcd	Lens Color
OVLBB4C7	InGaN	Blue	900	Water Clear
OVLBG4C7	InGaN	Green	4500	Water Clear
OVLBR4C7	AllnGaP	Red	1900	Water Clear
OVLBY4C7	AllnGaP	Yellow	1800	Water Clear

Leadframe material is iron alloy with tin-plated leads

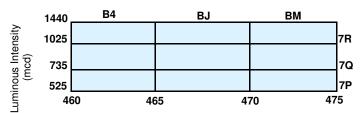
DO NOT LOOK DIRECTLY AT LED WITH UNSHIELDED EYES OR DAMAGE TO RETINA MAY OCCUR.

Absolute Maximum Ratings $T_A = 25^{\circ} C$ unless otherwise noted

Storage Temperature Range		-40 ~ +100 ℃
Operating Temperature Range		-40 ~ +85 ℃
Reverse Voltage		5 V
Continuous Famurand Commant	Blue, Green	20 mA
Continuous Forward Current	Red, Yellow	30 mA
Deals Familiard Commant (100/ Dots Cools 1 kHz)	Blue, Green	50 mA
Peak Forward Current (10% Duty Cycle, 1 kHz)	Red, Yellow	100 mA
Devices Discinction	Blue, Green	80 mW
Power Dissipation	Red, Yellow	78 mW
Comment Line and to the Arabic at Towns and the	Blue, Green	-0.2 mA/° C
Current Linearity vs Ambient Temperature	Red, Yellow	-0.5 mA/° C
LED Junction Temperature	125°C	
Lead Soldering Temperature (3 mm from the base of the epoxy b	oulb) ¹	260°C/5 seconds

Electrical Characteristics

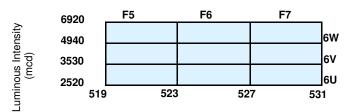
T_A = 25° C unless otherwise noted


SYMBOL	PARAMETER	COLOR	MIN	TYP	MAX	UNITS	CONDITIONS	
		Blue	525	900				
	Lucation and Indonesia.	Green	2520	4500		mad	1 00 m A	
I _V	Luminous Intensity	Red	1135	1900		mcd	I _F = 20 mA	
		Yellow	1135	1800				
		Blue		3.4	4.0			
V_{F}	Forward Voltage	Green		3.4	4.0	V	I _F = 20 mA	
VF		Red		2.0	2.6			
		Yellow		2.0	2.6			
	Reverse Current	Blue			50		V _R = 5 V	
1_		Green			50			
I _R		Red			10	μΑ		
		Yellow			10			
		Blue	460	465	475	- nm		
λ_{D}	Dominant Wavelength	Green	519	525	531		l = 20 mΛ	
		Red	620	628	640		$I_F = 20 \text{ mA}$	
		Yellow	585	589	595			
2Θ1⁄2H-H	50% Power Angle			45		deg	I _F = 20 mA	

Standard Bins (I_F = 20 mA)

Lamps are sorted to luminous intensity (I_V) and dominant wavelength (λ_D) bins shown. Orders may be filled with any or all bins contained as below.

OVLBB4C7 (BLUE)

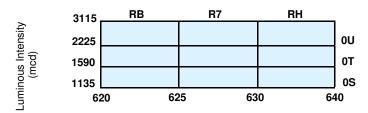


Dominant Wavelength (nm)

Forward Voltage (V_F)

Rank	Н	J	K	L
Voltage	2.6-3.0	3.0-3.3	3.3–3.6	3.6–4.0

OVLBG4C7 (GREEN)


Dominant Wavelength (nm)

Forward Voltage (V_F)

Command Valtage (V/)

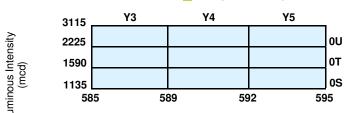
Rank	Н	J	K	L
Voltage	2.6-3.0	3.0-3.3	3.3-3.6	3.6-4.0

OVLBR4C7 (RED)

Dominant Wavelength (nm)

Forward	a voitage (v _F)			
	Rank	G	Н	J	6
\	/oltage	1.8–2.0	2.0–2.2	2.2–2.4	2.4–2.6

Important Notes:

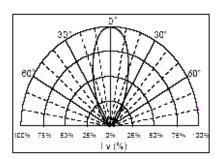

- 1. All ranks will be included per delivery, rank ratio will be based on the chip distribution.
- 2. To designate luminous intensity ranks, please contact OPTEK.
- 3. Pb content <1000 PPM.

Standard Bins (I_F = 20 mA)

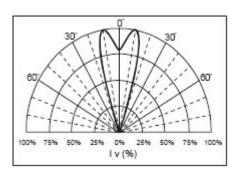
Lamps are sorted to luminous intensity (I_V) and dominant wavelength (λ_D) bins shown. Orders may be filled with any or all bins contained as below.

Dominant Wavelength (nm)

Forward Voltage (V_F)

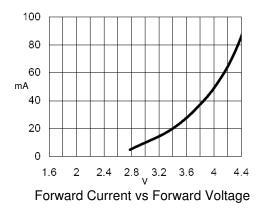

Rank	G	Н	J	6
Voltage	1.8–2.0	2.0–2.2	2.2–2.4	2.4–2.6

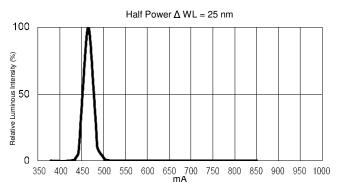
Important Notes:

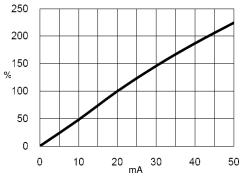

- 1. All ranks will be included per delivery, rank ratio will be based on the chip distribution.
- 2. To designate luminous intensity ranks, please contact OPTEK.
- 3. Pb content <1000 PPM.

Beam Pattern

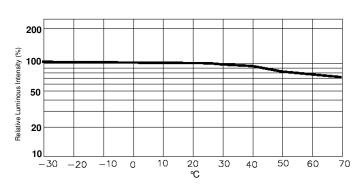
(BLUE) and (GREEN)

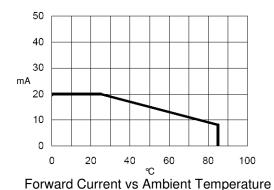



(RED) and (YELLOW)



Typical Electro-Optical Characteristics Curves (BLUE)

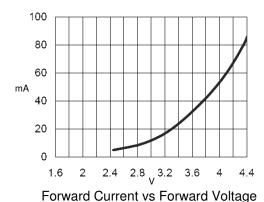


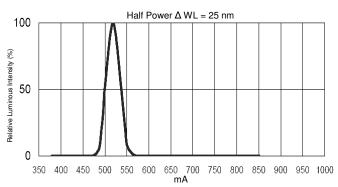

Relative Luminous Intensity vs Wavelength



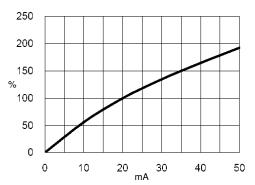
Relative Luminous Intensity vs Forward Current

Relative Luminous Intensity vs Ambient Temperature

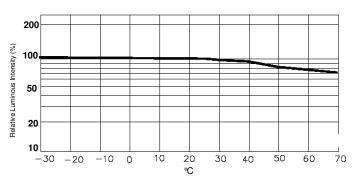


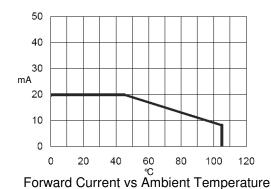


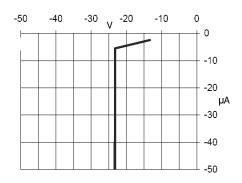
Reverse Current vs Reverse Voltage



Typical Electro-Optical Characteristics Curves (GREEN)

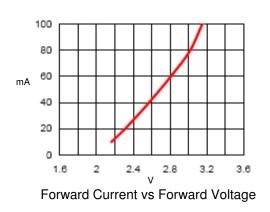


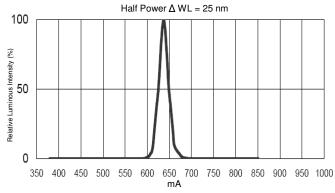

Relative Luminous Intensity vs Wavelength



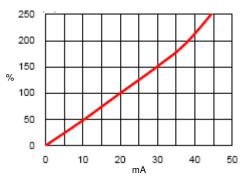
Relative Luminous Intensity vs Forward Current

Relative Luminous Intensity vs Ambient Temperature

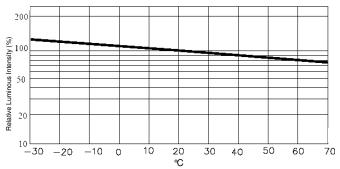


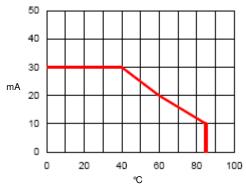


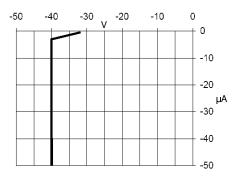
Reverse Current vs Reverse Voltage



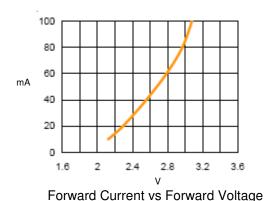
Typical Electro-Optical Characteristics Curves (RED)

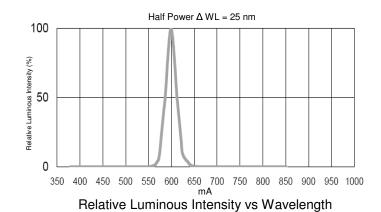


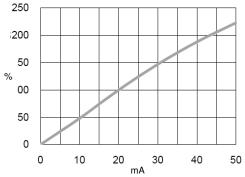

Relative Luminous Intensity vs Wavelength

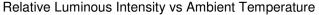

Relative Luminous Intensity vs Forward Current

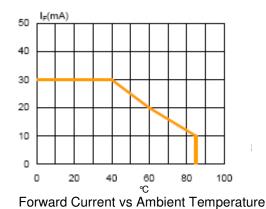
Relative Luminous Intensity vs Ambient Temperature

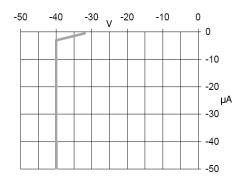

Forward Current vs Ambient Temperature



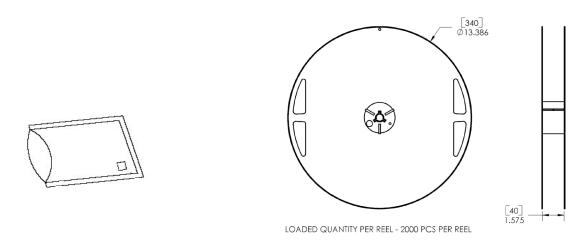

Reverse Current vs Reverse Voltage

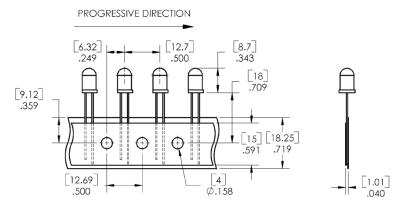

Typical Electro-Optical Characteristics Curves (YELLOW)



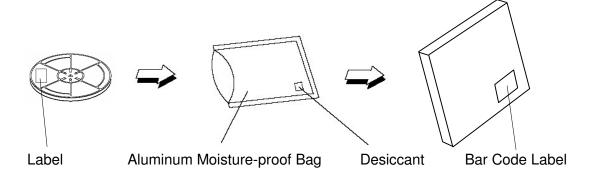


Relative Luminous Intensity vs Forward Current




Reverse Current vs Reverse Voltage

Packing Information: 500 per bulk bag with desiccant or available on 13-inch reel



Carrier Tape Dimensions: Loaded quantity 2000 pieces per reel

DIMENSIONS ARE IN INCHES AND [MILLIMETERS].

Moisture Resistant Packaging

Round Through-Hole LED Lamp OVLFx3C7 Series

Reliability Test

LED lamps are checked by reliability tests based on MIL standards.

Classi- fication	Test Item	Standard Test Method	Test Conditions	Duration	Unit	Acc / Rej Criteria	Result
Life Test	Operation Life Test	MIL-STD-750D Method 1026.3	$T_A=25^{\circ}C$, $I_F=30mA$ *	1000 Hrs	100	0 / 1	Pass
Test	(OLT)						
	High Temperature	MIL-STD-750D	T _A =100°C	1000 Hrs	100	0 / 1	D
	Storage (HTS)	Method 1032.1	1A-100 C	1000 Hrs	100	0 / 1	Pass
	Low Temperature	MIL-STD-750D	T ₄ =−40°C	1000 11	100	0 / 1	Pass
Test	Storage (LTS)	Method 1032.1	1 _A =-40 C	1000 Hrs	100		
lent	Temp. & Humidity	MIL-STD-750D	T -05% - D1-050/ I -20 4 **	500 11	100	0.71	,
ronn	with Bias (THB)	Method 103B	$T_A=85^{\circ}C$, Rh=85% $I_F=20mA$ **	500 Hrs	100	0 / 1	Pass
Environment Test	Thermal Shock	MIL-STD-750D	0°C ~ 100°C	100	100	0 / 1	D
_	Test (TST)	Method 1056.1	2min 2min	cycles	100	0/1	Pass
	Temperature	MIL-STD-750D	-40°C ~ 25°C~ 100°C ~ 25°C	100	100	0 / 1	D
	Cycling Test (TCT)	Method 1051.5	30min 5min 30min 5min	cycles	100	0 / 1	Pass
	6-11137	MIL-STD-750D	2251590 - 5	1 time	20	0 / 1	Pass
lest	Solderability	Method 2026.4	235±5°C → 5 sec				
ical	Resistance to	MIL-STD-750D	260±5°C + 10 sec	1 41	20	0 / 1	Dave
Mechanical Test	Soldering Heat	Method 2031.1	200 <u>1</u> 3 (1 time	20	0/1	Pass
Мес	I and Internity	MIL-STD-750D	Load 2.5N (0.25kgf)	2.4	20	0 / 1	D
	Lead Integrity	Method 2036.3	$0^{\circ} \sim 90^{\circ} \sim 0^{\circ}$, bend	3 times 20 0 / 1		0/1	Pass

Remark : (*) I_F =30mA for AlInGaP chip ; I_F =20mA for InGaN chip (**) I_F =20mA for AlInGaP chip ; I_F =10mA for InGaN chip

2. Failure Criteria (T_A =25°℃):

Test Item	Symbol	Test Conditions	Criteria for Judgment		
rest item	Symbol	rest Conditions	Min.	Max.	
Luminous Intensity	I_{V}	I _F =20 mA	LSL×0.7 **		
Voltage (Forward)	V _F	I _F =20 mA		USL×1.1 *	

(*) USL : Upper Standard Level , (**) LSL : Lower Standard Level